![]() |
|||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
![]() |
||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||
![]() |
![]() |
Вход | ![]() |
Раздел "Simulink" И.В.Черных. "Simulink: Инструмент моделирования динамических систем" В оглавление книги \ К следующему разделу \ К предыдущему разделу 9. Библиотека блоков Simulink 9.5. Nonlinear - нелинейные блоки 9.5.1. Блок ограничения Saturation Назначение: Выполняет ограничение величины сигнала. Параметры:
Выходной сигнал блока равен входному если его величина не выходит за порог ограничения. По достижении входным сигналом уровня ограничения выходной сигнал блока перестает изменяться и остается равным порогу. На рис. 9.5.1 показан пример использования блока для ограничения синусоидального сигнала. На рисунке приводятся временные диаграммы сигналов и зависимость выходного сигнала блока от входного. Рис. 9.5.1. Пример использования блока Saturation 9.5.2. Блок с зоной нечувствительности Dead Zone Назначение: Реализует нелинейную зависимость типа "зона нечувствительности (мертвая зона)". Параметры:
Выходной сигнал блока вычисляется в соответствии со следующим алгоритмом:
На рис. 9.5.2 показан пример использования блока Dead Zone Рис. 9.5.2. Пример использования блока Dead Zone 9.5.3. Релейный блок Relay Назначение: Реализует релейную нелинейность. Параметры:
Выходной сигнал блока может принимать два значения. Одно из них соответствует включенному состоянию реле, второе - выключенному. Переход их одного состояния в другое происходит скачком при достижении входным сигналом порога включения или выключения реле. В том случае если пороги включения и выключения реле имеют разные значения, то блок реализует релейную характеристику с гистерезисом. При этом значение порога включения должно быть больше, чем значение порога выключения. На рис. 9.5.3 показан пример использования блока Relay. На временных диаграммах видно, что включение реле происходит при достижении входным сигналом величины 0.5, а выключение при - 0.5. Рис. 9.5.3. Пример использования блока Relay 9.5.4. Блок ограничения скорости изменения сигнала Rate Limiter Назначение: Блок обеспечивает ограничение скорости изменения сигнала (первой производной). Параметры:
Вычисление производной сигнала выполняется по выражению:
где Вычисленное значение производной сравнивается со значениями уровней ограничения скорости Rising slew rate и Falling slew rate. Если значение производной больше, чем значение параметра Rising slew rate, то выходной сигнал блока вычисляется по выражению:
где R - уровень ограничения скорости при увеличении сигнала. Если значение производной меньше, чем значение параметра Falling slew rate, то выходной сигнал блока вычисляется по выражению:
где F - уровень ограничения скорости при уменьшении сигнала. Если значение производной лежит в пределах между нижним и верхним уровнями ограничения, то выходной сигнал блока равен входному:
На рис. 9.5.4 показан пример использования блока Rate Limiter, при подаче на его вход прямоугольного периодического сигнала. Рис. 9.5.4. Пример использования блока Rate Limiter 9.5.5. Блок квантования по уровню Quantizer Назначение: Блок обеспечивает квантование входного сигнала с одинаковым шагом по уровню. Параметры: Quantization interval На рис. 9.5.5 показан пример использования блока Quantizer, выполняющего квантование по уровню синусоидального сигнала. Шаг квантования задан равным 0.5. Рис. 9.5.5. Пример использования блока Quantizer 9.5.6. Блок сухого и вязкого трения Coulomb and Viscous Friction Назначение: Моделирует эффекты сухого и вязкого трения. Параметры:
Блок реализует нелинейную характеристику, соответствующую выражению:
где u – входной сигнал, На рис. 9.5.6 показан пример использования блока Coulomb and Viscous Friction. Оба параметра блока заданы равными 1. Рис. 9.5.6. Пример использования блока Coulomb and Viscous Friction 9.5.7. Блок люфта Backlash Назначение: Моделирует нелинейность типа “люфт”. Параметры:
Сигнал на выходе будет равен заданному значению Initial output, пока входной сигнал при возрастании не достигнет значения (Deaband width)/2 (где U – входной сигнал), после чего выходной сигнал будет равен U-(Deaband width)/2. После того как, произойдет смена направления изменения входного сигнала, он будет оставаться неизменным, пока входной сигнал не изменится на величину (Deaband width)/2, после чего выходной сигнал будет равен U+(Deaband width)/2. На рис. 9.5.7 показан пример работы блока Backlash. Входной сигнал блока гармонический с линейно возрастающей амплитудой. Рис. 9.5.7. Пример использования блока Backlash 9.5.8. Блок переключателя Switch Назначение: Выполняет переключение входных сигналов по сигналу управления. Параметры: Threshold – Порог управляющего сигнала. Блок работает следующим образом: На рис. 9.5.8 показан пример работы блока Switch. В том случае, когда сигнал на управляющем входе ключа равен 1, на выход блока проходит гармонический сигнал, если же управляющий сигнал равен нулю, то на выход проходит сигнал нулевого уровня от блока Ground. Пороговое значение управляющего сигнала задано равным 0.5. Рис. 9.5.8. Применение переключателя Switch 9.5.9. Блок многовходового переключателя Multiport Switch Назначение: Выполняет переключение входных сигналов по сигналу управления, задающему номер активного входного порта. Параметры: Number of inputs – Количество входов. Блок многовходового переключателя Multiport Switch, пропускает на выход сигнал с того входного порта, номер которого равен текущему значению управляющего сигнала. Если управляющий сигнал не является сигналом целого типа, то блок Multiport Switch производит отбрасывание дробной части числа, при этом в командном окне Matlab появляется предупреждающее сообщение. На рис. 9.5.9 показан пример работы блока Multiport Switch. Управляющий сигнал переключателя имеет три уровня и формируется с помощью блоков Constant, Step, Step1 и Sum. На выход блока Multiport Switch, в зависимости от уровня входного сигнала, проходят гармонические сигналы, имеющие разные частоты. Рис. 9.5.9. Применение переключателя Multiport Switch. Количество входов блока Multiport Switch можно задать равным 1. В этом случае на вход блока необходимо подать векторный сигнал, а сам блок будет пропускать на выход тот элемент вектора, номер которого совпадает с уровнем управляющего сигнала. На рис. 9.5.10 показан пример использования блока Multiport Switch при векторном сигнале. Временные диаграммы работы для данного примера совпадают с рассмотренными в предыдущем примере. Рис. 9.5.10. Применение переключателя Multiport Switch при векторном входном сигнале. 9.5.10. Блок ручного переключателя Manual Switch Назначение: Выполняет переключение входных сигналов по команде пользователя. Параметры: Нет. Командой на переключение является двойной щелчок левой клавишей “мыши” на изображении блока. При этом изображение блока изменяется, показывая, какой входной сигнал в данный момент проходит на выход блока. Переключение блока можно выполнять как до начала моделирования, так и в процессе расчета. На рис. 9.5.11 показан пример использования блока Manual Switch. Рис. 9.5.11. Пример использования блока Manual Switch. В оглавление книги \ К следующему разделу \ К предыдущему разделу |
![]() |
||
Всероссийская научная конференция "Проектирование научных и инженерных приложений в среде MATLAB" (май 2002 г.) |
||
На первую страницу \ Сотрудничество \ MathWorks \ SoftLine \ Exponenta.ru \ Exponenta Pro | ||
E-mail: info@matlab.ru | ||
Информация на сайте была обновлена 10.11.2003 |
Copyright 2001-2003 SoftLine Co
|
|